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Outline

 Brief description of the main features regarding:
Seasonal Cycle
MCS activity
Intraseasonal Variability
Interannual Variability
Long-term observed trends
Climate change projections

Including:

» Discussion of current level of understanding focusing on the
multi-scale nature of the problem

« Discussion of modeling current ability in describing those
features

Focus on the La Plata Basin (LPB) region




The La Plata Basin
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*The Plata Basin covers about 3.6
million km2.

The La Plata Basin is the fifth
largest in the world and second
only to the Amazon Basin in South
America in terms of geographical
extent.

*The principal sub-basins are
those of the Parana, Paraguay
and Uruguay rivers.

*The La Plata Basin covers parts
of five countries, Argentina,
Bolivia, Brazil, Paraguay and
Uruguay.




Global relevance of the la Plata Basin

*LPB is home of more than 100 million people including the
capital cities of 4 of the five countries, generating 70% of
the five countries GNP.

* The fluvial transport of the Paraguay-Parana Waterway
was of 13,000,000 tons in 2004.

* The hydroelectric potential is estimated at 92,000 MW.
There is more than 150 dams, and 60% of the hydroelectric
potential is already used.

* It is one of the largest food producers (cereals, soybeans
and livestock) of the world.

Export of Soybeans/Meal
US, Brazil, Argentina - MMT
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Climatological seasonal means
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Climatological seasonal mean precipitation
(shaded, NCEP reanalysis), & vertically

integrated moisture fluxes (arrows, CMAP)
(Vera et al., 2006, J. Climate)




Seasonal Cycle of precipitation from WCRP/CMIP3 models

(1970-1999 period)




DEMETER assessment over South America

"Development of a European Multimodel Ensemble system for seasonal to

InTERannual prediction”

Seasonal Precipitation
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MCS activity in South America

Subtropical South America has the largest fractional contribution of PFs
with MCSs to rainfall of anywhere on earth between 36 N and 36 S

(Zipser et al. BAMS, 2006)

Percent of 2A25 Rainfall frm Features with MCSs




MCS activity in South
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The South American Low-Level Jet

SALLJEX Flight (Level= 800_mb) 2003/02/06

LLJ Composites NDJF, ST T0
(Marengo et al. 2004) A

SALLJ spatial structure SALLJ diurnal cycle
depicted by NOAA/P-3 at 700 asl depicted

missions in SALLJEX by SALLJEX
e —— - observations

(Nicolini et al. 2004)

CLIVAR / VAMOS-GEWEX
Field Campaign -




MCS activity and the South American Low-Level Jet

Frequency of Convection
(2000-2003)

(Salio et al. MWR, 2007)

During SALLJ Days:

*Higher frequency of MCS
occurrence (41%)

*Synoptic waves associated with
SALLJ events provide the favorable
enviroment for MCS development

*MCS are bigger and last longer

MCS tend to be nocturnal in
both SALLJ and NO SALLJ
dates over northern Argentina
and Paraguay and diurnal over
southern Brazil




Intraseasonal variability
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Intraseasonal variability from WCRP/CMIP3 Models
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NCEP/NCAR
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Precipitation Interannual Variability

Both ENSO and AAO signature on

ON D (1 970-1 999) precipitation variability are largest over

La Plata Basin during austral spring

Vera and Silvestri (2007)



Correlations between EINin03.4 SST anomalies and (left) precipitation and
(right) 500-hPa geopotential height anomalies. Significant values at 90, 95 and
99% are shaded. NCEP reanalysis data.

(Vera and Silvestri, 2007)



ENSO signal in SH Circulation anomalies from WCRP/CMIP3 models

OND (1970-1999)

Correlations between ENSO index and 500-hPa geopotential height
anomalies. Significant values at 90, 95 and 99% are shaded.

(Vera and Silvestri 2007)




OND (1970-1999)

Correlations between ENSO index and precipitation anomalies. Significant

1)
values at 90, 95 and 99% are shaded. (Vera and Silvestri 2007)



Southern Annular Mode (SAM

Correlations between SAM index and (left) precipitation and (right) 500-hPa
geopotential height anomalies. Significant values at 90, 95 and 99% are
shaded. NCEP reanalysis data.

(Vera and Silvestri, 2007)



SAM signal in SH circulation anomalies from IPCC-AR4 models

OND (1970-1999)

Correlations between SAM index and 500-hPa geopotential height
anomalies. Significant values at 90, 95 and 99% are shaded.

(Vera and Silvestri, 2007)




SAM signal in South America precipitation anomalies from IPCC models

-"*-a.k 1!
OND (1970-1999)
Correlations between SAM index and 500-hPa geopotential height
anomalies. Significant values at 90, 95 and 99% are shaded.

(Vera et al. 2007)




Interannual Variability in the La Plata Basin (LPB)

-ENSO warm events Positive OND
_ — precipitation
-SAM negative phase anomalies in LPB

(1970-1999)

Correlations between precipitation anomalies in LPB and (left) SST anomalies
and (right) 500-hPa geopotential height anomalies. Significant values at 90, 95
and 99% are shaded. NCEP reanalysis data.

(Vera and Silvestri 2007)



Correlations between OND precipitation anomalies in LPB
and SST anomalies from WCRP/CMIP3 models

Significant values at 90, 95 and 99% are shaded.

(Vera and Silvestri, 2007)




Correlations between precipitation anomalies in LPB and 500-hPa
geopotential height anomalies from WCRP/CMIP3 models

OBS

Significant values at 90, 95 and 99% are shaded.

(Vera and Silvestri, 2007)




JFM Precipitation Trends observed in LPB

58

(Liebmann, et al. 2004)

JFM rainfall in southern Brazil versus year
gridded data from stations with at least 48 yr record
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Impacts resulting from precipitation long-
term positive trends

Expansion of the
agricultural area to
the west.

= 1950-69
- 1980-99

Camilloni et al. (2005)




Observed changes in the extreme precipitation
events

Frequency of 2-
daily precipitation
events larger
than 100 mm
over Central and
Eastern
Argentina.

Camilloni et al. (2005)




Changes in the de la Plata river level at
Buenos Aires Harbor

(D Onofrio, SHN)
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JFM Precipitation Trends in LPB from WCRP/CMIP3 models

Precipitation Trends
JFM (1970-1999)

11 = 1 B

UDEL Cm GFDL1 GFDL2 G G GISS2 GISS3 IPSL MI1 MI MIROC3 VIPI1 MRI1 I\EJ MRI3 %RM fRE




JJA Precipitation Trends in LPB from WCRP/CMIP3 models

Precipitation Trends
JJA (1970-1999)
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Temperature and precipitation changes from Multi-model
ensemble simulations (2080-2099)-(1980-1999). SRES A1B
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REDUCTION OF PRECIPITATION IN THE SOUTHERN ANDES:

Poleward shift of the storm tracks

Difference in SH cyclone tracks between the 21C and 20C model
simulation (left) DJF track density, (right) JJA track density
(Bengtsson et al. 20006)




PRECIPITATION INCREASE IN THE LPB:

Increased tropical SST

anomalies — increased water

vapor at tropical continental ——»
regions — Advective effects
(associated with circulation
changes)

Increased moisture
convergence

b) atmospheric water vapor content 2080-2099 SESA: VIMT div (2070—2100)—(1970-2000)
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Temperature and precipitation changes (2080-2099)-(1980-1999). SRES A1B

Annual Mean Surface Air Temp Response (°C) Annual Mean Precip Respanse (%)
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Uncertainties in the DJF precipitation changes from the multi-model
ensemble (2080-2099)-(1980-1999). SRES A1B

20 Model simulations
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Modeling Strategy: A multiscale approach

« Deficiencies in the ability to model "local" processes, are
among the leading factors limiting forecast skill throughout the
American region.

The relatively poor simulation of some key elements like the
diurnal cycle, some aspects of the low level jets, planetary
boundary layer processes, clouds and ocean mixing not only
require a regional multi-scale focus but also are critical issues
for improving global model simulations and predictions.

Improvements to the physical parameterizations, and
Improvements to how we model the interactions between the
local processes and regional and larger scale variability in
regional and global models are needed.




VAMOS Modeling Plan

(www.clivar.org)
Integrated Approach
— SST Variability in the Pan-American Seas
— Monsoon Onset, Maturation and Demise
— Droughts and Floods
— Diurnal Cycle

Cross-Cuts:
— Metrics for model assessments
— Assessment of Models
— Hypothesis Driven Numerical Experimentation
— “Climate Process Team” Model Development/ Improvement Strategies

Data Assimilation, Analysis and Assessing Observing Systems

— To assess the impact of the VAMOS observations, better understand the nature of model
errors, and to obtain a better understanding and improved simulation of the full range of
phenomena comprising the American monsoon systems.

Prediction and Global Scale Linkages

— A key issue: To determine the extent to which model improvements made in the
simulation of regional-scale phenomena (diurnal cycle, basic monsoon evolution, low
level jets, etc), validated against improved data sets, ultimately translate into improved
dynamical predictions and more reliable climate change projections.






